Skip to main content

Implementation KNN- Classifier in Python

 

Image for post

As we previously examine the KNN that how it works and how to select the K for better outcomes and no overfitting. In this article, we will be going to code the python version for KNN and we will find the most immeasurable value of K to use for better outcomes.

Find the below code with explanation:

Import the necessary libraries which we will need for the future.

Image for post

Now load the dataset from the local and find how rows look in it.

Image for post

To download the dataset please refer to the following link.

Now select all the features and the target_class from the set and divide the set into test and train by 33% and 67%.

Image for post

Now for a range values of K fit on the training dataset and then test on the test dataset and find the accuracy and then store it into some array.

Image for post

Now plot the K-values with their corresponding accuracy and see which value is best.

Image for post

Now we have our model and we can predict any given unknown value with more accuracy because now we know the best value of k.

Thanks for browsing my pattern, and I hope it benefits you in theory and in practice!!!!

Comments

Popular posts from this blog

Random Forest and how it works

  Random Forest Random Forest is a Machine Learning Algorithm based on Decision Trees. Random forest works on the ensemble method which is very common these days. The ensemble method means that to make a decision collectively based on the decision trees. Actually, we make a prediction, not simply based on One Decision Tree, but by an unanimous Prediction, made by ‘ K’  Decision Trees. Why should we use There are four reasons why should we us e  the random forest algorithm. The one is that it can be used for both  classification and regression  businesses. Overfitting is one critical problem that may make the results worse, but for the Random Forest algorithm, if there are enough trees in the forest, the classifier  won’t overfit  the model. The third reason is the classifier of Random Forest can handle  missing values , and the last advantage is that the Random Forest classifier can be modeled for  categorical values. How does the Random...

DBSCAN Clustering Algorithm-with maths

  DBSCAN is a short-form of   D ensity- B ased   S patial   C lustering of   A pplications with   N oise. It is an unsupervised algorithm that will take the set of points and make them into some sets which have the same properties. It is based on the density-based clustering and it will mark the outliers also which do not lie in any of the cluster or set. There are some terms that we need to know before we proceed further for algorithm: Density Reachability A point “p” is said to be   density reachable from a point “q” if point “p” is within ε distance from point “q” and “q” has a sufficient number of points in its neighbors which are within distance ε. Density Connectivity A point “p” and “q” are said to be density connected if there exists a point “r” which has a sufficient number of points in its neighbors and both the points “p” and “q” is within the ε distance. This is a chaining process. So, if “q” is neighbor of “r”, “r” is neighbor of “s”, “s” ...

Neural Network theory and implementation for Regression

Introduction and background In this article, we are going to build the regression model from neural networks for predicting the price of a house based on the features. Here is the implementation and the theory behind it. The neural network is basically if you see is derived from the logistic regression, as we know that in the logistic regression: Formulae for Logistic Regression:  y = ax+b so for every node in each layer, we will apply it and after this output is from the activation function which will have the input from logistic regression and the output is output from the activation function. So now  w e will implement the neural  network  with 5 hidden layers. Implementation 1. Import the libraries which we will going to use 2. Import the dataset and check the types of the columns 3. Now build your training and test set from the dataset. 4. Now we have our data we will now make the model and I will describe to you how it will predict the price. Here we are making...